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What is FV3? FV3 is:

• Fully finite volume! Flux divergences + vertical Lagrangian + integrated PGF


• Mimetic: Recovers Newton’s and conservation laws with integral theorems


• Adaptable and Robust: works with many physics and chemistry packages! 
AM2/3/4, GOCART, MOZART, CAM, GFS, GEOS, etc. 
Also excellent for ocean coupling


• Flexible: arbitrary vertical levels, grid refinement by nesting and/or stretching


• Fast! A faster model tends to be a better model


• Proven effective at all scales. Maintains the large-scale circulation while 
accurately representing mesoscale and cloud-scale

FV3



0.17 hurricanes per year after normalization, compared
to the observed trend of 0.22 hurricanes per year. As
shown in Fig. 11b, the difference between the ensemble-
mean trend and the observation is not significant, with
the observed trend resting within the spread of model
trends from the four realizations.
Figure 9 shows the result for the east Pacific. The

model captures reasonably well the less active years of
1988–89, 1995, and 1998–99 and the active period of the
early 1990s. Themodel does poorly for the years of 1985,
1994, 2000, and 2002. Overall, the correlation between
the ensemble mean and the observation is 0.62 (r2 5
0.38, p 5 0.001, assuming the 25 individual years are
temporally independent samples). The model also sim-
ulates a downward trend (20.14 yr21) of hurricane fre-
quency in the east Pacific over this time period, compared
to the observed trend (20.24 yr21). Detrended, the cor-
relation with the ensemble-mean model drops to 0.57.
The correlation between hurricane counts in the east
Pacific and North Atlantic in the observations is 20.49,
while the model generates correlations ranging from
20.40 to20.74 in the 4 realizations, with a correlation of
20.79 between the ensemble means in the two basins.
Figure 10 shows the corresponding results for the west

Pacific. Despite the overestimate of the total west Pacific
hurricane number (see Fig. 4), the storm variability is
comparable in model and observations after the nor-

malization. The anomalously quiet years of 1983, 1988,
1992, and 1998 are captured well. The poorest simula-
tions appear to be for 1995 and 1999, for which there is
roughly a factor of 2 overestimate in the storm count
after normalization. The correlation of the ensemble
mean with the observations is 0.52 (r25 0.28, p5 0.007).
The ensemble-mean model simulates a downward trend
(20.07 yr21) in hurricane frequency over this time pe-
riod, again close to the observed trend (20.06 yr21).
Figure 11 provides a summary plot to show the noise

level of model-simulated correlations and trends for
each basin. Figure 11a displays the correlation of ob-
served hurricane count to the four-member ensemble
mean and the correlation of each ensemble member to
the ensemble mean of the remaining three. In general,
the model means are correlated as well to observations
as themodel means are to another ensemblemember. In
the South Pacific there is a correlation of roughly 0.3
between the observed and modeled time series of hur-
ricane count for the 4-member ensemble mean. The
model produces no significant correlation in either the
North or South Indian Ocean. In those regions in which
the correlation of the model ensemble mean to obser-
vations is low, the correlation of the model ensemble
mean to individual realization is also low. Figure 11b
shows the observed and modeled linear trends in hur-
ricane frequency for the period 1981–2005 in each basin.

FIG. 7. Interannual variation of hurricane numbers for North Atlantic from 1981 to 2005. IBTrACS observations
(Kruk et al. 2010) (red) and four-member ensemble mean (blue); shaded area shows the simulated maximum and
minimum number for each year from the four-member integrations. Model time series are normalized by time-
independent multiplicative factors so as to reproduce the observed total number. Dotted lines show observed and
model (ensemble mean) linear trends.
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的研发与评估

图 在 公里 C48 ， 公里 C96 ， 公里 C192 分辨下对夏

季地形降水的模拟，与 降水资料的比较。
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图 沿着 ◦ ， 在 公里 C48 ， 公里 C96 ， 公里 C192

分辨下对夏季地形降水的模拟，与 降水资料的比较，粗黑线为地形高度。

正是由于不同分辨率的差异，导致模式在不同分辨率下对降水的刻画差异很大

图 ，对于 降水资料对比， 公里下，孟加拉湾西部出现一个异常的

降水中心，降水区范围较大，最强降水偏弱。 公里下，青藏高原南侧的降水带
Figure 2. July to October (a) hurricane and (c) tropical storm counts for each year during the period of 2000–2010 in the
North Atlantic basin. (b) As in Figure 2a, but for typhoons in the western North Pacific basin. (d) As in Figure 2b, but for
tropical storms. IBTRrACS observations are shown by black line and circles. Four‐ensemble members are shown by
magenta open circles, while the ensemble mean is denoted by magenta line and closed circles. The red line and circles rep-
resent the bias removed ensemble mean.

Figure 1. Hovmöller diagrams of daily surface precipitation (unit: mm day−1) averaged between 5°S and 10°N from July 1
to July 31, 2010 from (a) the Tropical Rainfall Measuring Mission (TRMM) 3B42 data and (b) the 25‐km GFDL HiRAM
forecast.
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Who uses FV3?

• GFDL models


• AM4/CM4/ESM4


• HiRAM


• CM2.5/2.6


• FLOR and HiFLOR


• fvGFS 

• CAM-FV3 (FV is default in CESM)


• LASG FAMIL


• NASA GEOS


• Harvard GEOS-CHEM


• GISS ModelE


• MPI ECHAM (advection scheme)


• JAMSTEC MIROC (adv. scheme)

• FV and FV3 are among the most widely used global cores in the world, with a 
large and diverse community of users.



Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme


• Lin and Rood (1997, QJ): FV solver


• Lin (1997, QJ): FV Pressure Gradient Force


• Lin (2004, MWR): Vertically-Lagrangian discretization


• Putman and Lin (2007, JCP): Cubed-sphere solver 


• Lin (in prep): Nonhydrostatic dynamics


• Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
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Lin and Rood (1996, MWR) 
Flux-form advection scheme

• Forward-in-time 2D scheme derived from 1D PPM operators


• Advective-form inner operators (f, g) eliminate leading-order deformation error


• Allows preservation of constant tracer field under nondivergent flow


• Ensures forward-in time scheme is stable


• Fully 2D! Stability condition is max( Cx, Cy ) < 1                                  


• Flux-form outer operators F, G ensure mass conservation



Lin and Rood (1996, MWR) 
Flux-form advection scheme

• PPM operators are upwind biased


• More physical, but also more diffusive


• Monotonicity constraint to prevent extrema; also option for “linear” (un-
limited) non-monotonic scheme. Tracer advection is always monotonic.


• Scheme maintains linear correlations between tracers when unlimited or 
when monotonicity constraint applied (not necessarily so for positivity)



1D Advection Test

Lin and Rood 1996, MWR
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Lin and Rood (1997, QJ) 
FV solver

• Solves adiabatic layer-averaged 
vector-invariant equations. δp is 
the layer mass.


• Everything (except the PGF) is a 
flux! So we use the Lin & Rood 
advection scheme for forward 
evaluation.


• PGF evaluated backward with 
updated pressure and height


• Question: how is vertical 
transport incorporated?

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143
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where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature �; and the vector wind V. Here, k̂ is the vertical unit vector. The150
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Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.
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Lin and Rood (1997, QJ) 
FV solver

• D-grid, with C-grid winds for fluxes


• C-grid winds advanced a half-
timestep—like a simplified 
Riemann solver. Diffusion due 
to C-grid averaging is alleviated


• Two-grid discretization and  
time-centered fluxes avoid 
computational modes


• Divergence is invisible to solver: 
divergence damping is an 
integral part of the solver
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FV solver: 
Vorticity flux

• Nonlinear vorticity flux term in 
momentum equation, confounding 
linear analyses


• D-grid allows exact computation of 
absolute vorticity—no averaging!


• Vorticity uses same flux as δp: 
consistency improves geostrophic 
balance, and SW-PV advected as a 
scalar!


• Many flows are strongly vortical, 
not just large-scale…



FV solver: 
Kinetic Energy Gradient

• Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if 
KE gradient not consistent with vorticity flux


• Solution: use C-grid fluxes again to advect wind components, yielding an 
upstream-biased kinetic energy 

• Consistent advection again!



Development of the FV3 core
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• Lin (in prep): Nonhydrostatic dynamics


• Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement




Lin (1997, QJ) 
Finite-Volume Pressure Gradient Force

• Computed from Newton’s 
second and third laws, and 
Green’s Theorem


• Errors lower, with much less 
noise, compared to a finite-
difference pressure gradient 
evaluation


• Easily carries over to 
nonhydrostatic solver
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Lin (2004, MWR) 
Vertically-Lagrangian Discretization

• Equations of motion are vertically integrated to yield a series of layers, which 
deform freely during the integration


• Truly Lagrangian! All flow follows the Lagrangian surfaces, including vertical 
motion. Vertical transport is entirely implicit, so…


• No vertical Courant number restriction!! This is critical for high vertical 
resolution in the boundary layer


• To avoid layers from becoming infinitesimally thin, vertical remapping to 
“Eulerian” layers is periodically performed



Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme
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Putman and Lin (2007, JCP) 
Cubed-sphere solver

• Gnomonic cubed-sphere grid: 
coordinates are great circles


• Widest cell only √2 wider than 
narrowest


• More uniform than 
conformal, elliptic, or spring-
dynamics cubed spheres


• Tradeoff: coordinate is non-
orthogonal, and special 
handling needs to be done at 
the edges and corners.

�

D-grid winds

C-grid winds
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Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
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Putman and Lin (2007, JCP) 
Non-orthogonal coordinate

• Gnomonic cubed-sphere is 
non-orthogonal


• Instead of using numerous 
metric terms, use covariant and 
contravariant winds


• Solution winds are covariant, 
advection is by contravariant 
winds


• KE is product of the two
�
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Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme
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• Lin (1997, QJ): FV Pressure Gradient Force


• Lin (2004, MWR): Vertically-Lagrangian discretization


• Putman and Lin (2007, JCP): Cubed-sphere solver 


• Lin (in prep): Nonhydrostatic dynamics 

• Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement




Nonhydrostatic FV3

• Goal: Maintain hydrostatic circulation, while accurately representing non-
hydrostatic motions in the fully-compressible Euler equations


• Introduce new prognostic variables: w and δz (height thickness of a layer), 
from which density (and thereby nonhydrostatic pressure) is computed 


• Traditional semi-implicit solver for handling fast acoustic waves


• True nonhydrostatic! Explicit w into vertically-Lagrangian solver


• Vertical velocity w is the 3D cell-mean value. Vorticity is also a cell-mean 
value, so helicity can be computed without averaging!



Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme
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• Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement 



Stretched grid 
The simple, easy way to achieve grid refinement

• Smooth deformation! And requires 
no changes to the solver


• Smooth grid has no abrupt 
discontinuity, and greatly reduces 
need for scale-aware physics


• Capable of extreme refinement 
(80x!!) for easy storm-scale 
simulations on a full-size earth

Harris, Lin, and Tu, 2016



Two-way grid nesting

• Simultaneous coupled, consistent 
global and regional solution. No waiting 
for a regional prediction!


• Different grids permit different 
parameterizations; doesn’t need a 
“compromise” or scale-aware 
physics for high-resolution region


• Coarse grid can use a longer timestep: 
more efficient than stretching!


• Very flexible! Combine with stretching 
for very high levels of refinement

Harris and Lin, 2013, 2014



FV solver: 
Time-stepping procedure

• Interpolate time tn D-grid winds to C-grid


• Advance C-grid winds by one-half timestep to time tn+1/2


• Use time-averaged air mass fluxes to update δp and θv to time tn+1


• Compute vorticity flux and KE gradient to update D-grid winds to time tn+1


• Use time tn+1 δp and θv to compute PGF to complete D-grid wind update



FV3 nonhydrostatic solver: 
Time-stepping procedure

• Interpolate time tn D-grid winds to C-grid


• Advance C-grid winds by one-half timestep to time tn+1/2


• Use time-averaged air mass fluxes to update δp and θv, and to advect w and 
δz, to time tn+1


• Compute vorticity flux and KE gradient to update D-grid winds to time tn+1


• Solve nonhydrostatic terms for w and nonhydrostatic pressure 
perturbation using vertical semi-implicit solver 

• Use time tn+1 δp, δz, and θv to compute PGF to complete D-grid wind update



Mass conserving two-way nesting

• Usually quite complicated: requires flux BCs, conserving updates, and 
precisely-aligned grids


• Update only winds and temperature; not δp, δz, or tracer mass 


• Two-way nesting overspecifies solution anyway


• Very simple: works regardless of BC and grid alignment


★ δp is the vertical coordinate: need to remap the nested-grid data to the 
coarse-grid’s vertical coordinate


• Option: “renormalization-conserving” tracer update


