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What is FV3? FV3is:

* Fully finite volume! Flux divergences + vertical Lagrangian + integrated PGF
- Mimetic: Recovers Newton’s and conservation laws with integral theorems

- Adaptable and Robust: works with many physics and chemistry packages!
AM2/3/4, GOCART, MOZART, CAM, GFS, GEOS, etc.
Also excellent for ocean coupling

- Flexible: arbitrary vertical levels, grid refinement by nesting and/or stretching

—N
« Fast! A faster model tends to be a better model -@

« Proven effective at all scales. Maintains the large-scale circulation while
accurately representing mesoscale and cloud-scale
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Who uses FV3?

- FV and FV?3 are among the most widely used global cores in the world, with a
large and diverse community of users.

« GFDL models » CAM-FV3 (FV is default in CESM)
* AM4/CM4/ESM4 « LASG FAMIL
« HIRAM * NASA GEOS
- CM2.5/2.6 - Harvard GEOS-CHEM
* FLOR and HiFLOR » GISS ModelE
« fVGFS - MPI ECHAM (advection scheme)

- JAMSTEC MIROC (adv. scheme)



Development of the FV° core

* Lin and Rood (1996, MWR): Flux-form advection scheme

- Lin and Rood (1997, QJ): FV solver

 Lin (1997, QJ): FV Pressure Gradient Force

* Lin (2004, MWR): Vertically-Lagrangian discretization

* Putman and Lin (2007, JCP): Cubed-sphere solver

* Lin (in prep): Nonhydrostatic dynamics

« Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
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_in and Rood (1996, MWR)

-lux-form advection scheme
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* Forward-in-time 2D scheme derived from 1D PPM operators

« Advective-form inner operators (f, g) eliminate leading-order deformation error
* Allows preservation of constant tracer field under nondivergent flow
 Ensures forward-in time scheme is stable
- Fully 2D! Stability condition is max( Cx, Cy) < 1

- Flux-form outer operators F, G ensure mass conservation
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-lux-form advection scheme

1 ! L
gt = —— {W"q” + F[q” + 58(9”):| + G[q" T “Z"f(qn)]} ,

T

- PPM operators are upwind biased
* More physical, but also more diffusive

- Monotonicity constraint to prevent extrema; also option for “linear” (un-
limited) non-monotonic scheme. Tracer advection is always monotonic.

« Scheme maintains linear correlations between tracers when unlimited or
when monotonicity constraint applied (not necessarily so for positivity)
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in and Rood (1997, QJ)

-\ solver

+ Solves adiabatic layer-averaged
vector-invariant equations. 6p is
the layer mass.

 Everything (except the PGF) is a
flux! So we use the Lin & Rood
advection scheme for forward
evaluation.

« PGF evaluated backward with
updated pressure and height

 Question: how is vertical
transport incorporated?
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in and Rood (1997, QJ)

-\ solver
« D-grid, with C-grid winds for fluxes %Jrv,(wp) _ 0
00pO
2 4V (VEp®) = 0
 C-grid winds advanced a half- or TV (Vore)
timestep—like a simplified
Riemann solver. Diffusion due %_Y QX V-V (k4 vV2D) - %vp

to C-grid averaging is alleviated

- Two-grid discretization and
time-centered fluxes avoid
computational modes

 Divergence is invisible to solver:
divergence damping is an
integral part of the solver D-grid winds =8>

Fluxes =—>
C-grid winds s




FV solver:
Vorticity flux

* Nonlinear vorticity flux term in
momentum equation, confounding
linear analyses

- D-grid allows exact computation of
absolute vorticity —no averaging!

Vorticity uses same flux as p:
consistency improves geostrophic
balance, and SW-PV advected as a
scalar!

- Many flows are strongly vortical,
not just large-scale...

Figure 10. Polar stereographic projection (from the equator to the north pole) of the potential vorticity contours
at DAY-24 in the ‘stratospheric vortex erosion’ test case at three different resolutions.



FV solver:
Kinetic Energy Gradient

* Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if
KE gradient not consistent with vorticity flux

+ Solution: use C-grid fluxes again to advect wind components, yielding an
upstream-biased kinetic energy

=1 {%(F", At; u") +Y(TF, At: v")} .

- Consistent advection again!



Development of the FV° core

* Lin and Rood (1996, MWR): Flux-form advection scheme

- Lin and Rood (1997, QJ): FV solver

 Lin (1997, QJ): FV Pressure Gradient Force

* Lin (2004, MWR): Vertically-Lagrangian discretization

* Putman and Lin (2007, JCP): Cubed-sphere solver

* Lin (in prep): Nonhydrostatic dynamics

« Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement



|in (1997, QJ)

-inite-Volume Pressure Gradient Force

- Computed from Newton’s
second and third laws, and
Green’s Theorem

* Errors lower, with much less
noise, compared to a finite-
difference pressure gradient
evaluation

- Easily carries over to
nonhydrostatic solver
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Lin (2004, MWR)
Vertically-Lagrangian Discretization

- Equations of motion are vertically integrated to yield a series of layers, which
deform freely during the integration

- Truly Lagrangian! All flow follows the Lagrangian surfaces, including vertical
motion. Vertical transport is entirely implicit, so...

* No vertical Courant number restriction!! This is critical for high vertical
resolution in the boundary layer

 To avoid layers from becoming infinitesimally thin, vertical remapping to
“Eulerian” layers is periodically performed
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Putman and Lin (2007, JCP)
Cubed-sphere solver

- Gnomonic cubed-sphere grid:
coordinates are great circles

- Widest cell only /2 wider than
narrowest

* More uniform than
conformal, elliptic, or spring-
dynamics cubed spheres

 Tradeoff: coordinate is non-
orthogonal, and special
handling needs to be done at
the edges and corners.

D-grid winds ==
Fluxes =—>
C-grid winds e




Putman and Lin (2007, JCP)
Non-orthogonal coordinate

« Gnomonic cubed-sphere is
non-orthogonal

* Instead of using numerous
metric terms, use covariant and
contravariant winds

- Solution winds are covariant,
advection is by contravariant
winds

» KE is product of the two

D-grid winds ==
Fluxes =—>
C-grid winds e
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Nonhydrostatic FV°

- Goal: Maintain hydrostatic circulation, while accurately representing non-
hydrostatic motions in the fully-compressible Euler equations

* Introduce new prognostic variables: w and 6z (height thickness of a layer),
from which density (and thereby nonhydrostatic pressure) is computed

* Traditional semi-implicit solver for handling fast acoustic waves
- True nonhydrostatic! Explicit w into vertically-Lagrangian solver

* Vertical velocity w is the 3D cell-mean value. Vorticity is also a cell-mean
value, so helicity can be computed without averaging!
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Stretched grid

The simple, easy way to achieve grid refinement

» Smooth deformation! And requires
no changes to the solver

* Smooth grid has no abrupt
discontinuity, and greatly reduces
need for scale-aware physics

- Capable of extreme refinement
(80x!!) for easy storm-scale .
simulations on a full-size earth ARy

Harris, Lin, and Tu, 2016 aon o o
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Two-way grid nesting

- Simultaneous coupled, consistent
global and regional solution. No waiting
for a regional prediction!

- Different grids permit different
parameterizations; doesn’t need a
“compromise” or scale-aware
physics for high-resolution region

« Coarse grid can use a longer timestep:
more efficient than stretching!

 Very flexible! Combine with stretching
for very high levels of refinement

Harris and Lin, 2013, 2014




FV solver:
Time-stepping procedure

- Interpolate time t" D-grid winds to C-grid

+ Advance C-grid winds by one-half timestep to time t"+1/2

+ Use time-averaged air mass fluxes to update 6p and 6, to time t"*’

« Compute vorticity flux and KE gradient to update D-grid winds to time t"*1

 Use time t™' 6p and 6, to compute PGF to complete D-grid wind update



FV3 nonhydrostatic solver:
Time-stepping procedure

- Interpolate time t" D-grid winds to C-grid
 Advance C-grid winds by one-half timestep to time t"+1/2

- Use time-averaged air mass fluxes to update 6p and 6., and to advect w and
8z, to time tn+]

« Compute vorticity flux and KE gradient to update D-grid winds to time t"*'

- Solve nonhydrostatic terms for w and nonhydrostatic pressure
perturbation using vertical semi-implicit solver

 Use time t™1 6p, 6z, and 6, to compute PGF to complete D-grid wind update



Mass conserving two-way nesting

 Usually quite complicated: requires flux BCs, conserving updates, and
precisely-aligned grids

- Update only winds and temperature; not ép, 6z, or tracer mass

* Two-way nesting overspecifies solution anyway

* Very simple: works regardless of BC and grid alignment

* Op is the vertical coordinate: need to remap the nested-grid data to the
coarse-grid’s vertical coordinate

 Option: “renormalization-conserving” tracer update



