The GFDL Finite-Volume Cubed-sphere Dynamical Core

Lucas Harris, Xi Chen, Shian-Jiann Lin
and the GFDL FV³ Team
NOAA/Geophysical Fluid Dynamics Laboratory

Dynamical Core Model Intercomparison Project
National Center for Atmospheric Research
Boulder, CO
7 June 2016
The GFDL FV³ Team

S-J Lin, Team Leader
Rusty Benson, Lead Engineer
Morris Bender NOAA/GFDL
Jan-Huey Chen UCAR
Xi Chen Princeton Univ.
Lucas Harris NOAA/GFDL
Zhi Liang NOAA/GFDL
Tim Marchok NOAA/GFDL
Matt Morin Engility
Bill Putman NASA/GSFC
Shannon Rees Engility
Bill Stern UCAR
Linjiong Zhou Princeton Univ.
What is FV3? FV3 is:

- **Fully finite volume!** Flux divergences + vertical Lagrangian + integrated PGF

- **Mimetic:** Recovers Newton’s and conservation laws with integral theorems

- **Adaptable and Robust:** works with many physics and chemistry packages! AM2/3/4, GOCART, MOZART, CAM, GFS, GEOS, etc. Also excellent for ocean coupling

- **Flexible:** arbitrary vertical levels, grid refinement by nesting and/or stretching

- **Fast!** A faster model tends to be a better model

- **Proven effective at all scales.** Maintains the large-scale circulation while accurately representing mesoscale and cloud-scale
Figure 10 shows the corresponding results for the west Pacific and North Atlantic in the observations is comparable in model and observations after the nor-
tropical storms. IBTrACS observations are shown by black line and circles. Four
Figure 2.

Hovmöller diagrams of daily surface precipitation (unit: mm day

Chen and Lin: TC Seasonal Prediction with GFDL HiRAM
Who uses FV3?

- FV and FV3 are among the most widely used global cores in the world, with a large and diverse community of users.

- GFDL models
 - AM4/CM4/ESM4
 - HiRAM
 - CM2.5/2.6
 - FLOR and HiFLOR
 - fvGFS

- CAM-FV3 (FV is default in CESM)
 - LASG FAMIL
 - NASA GEOS
 - Harvard GEOS-CHEM
 - GISS ModelE
 - MPI ECHAM (advection scheme)
 - JAMSTEC MIROC (adv. scheme)
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Lin and Rood (1996, MWR)
Flux-form advection scheme

\[q^{n+1} = \frac{1}{\pi_{n+1}^{+1}} \left\{ \pi^n q^n + F \left[q^n + \frac{1}{2} g(q^n) \right] + G \left[q^n + \frac{1}{2} f(q^n) \right] \right\} . \]

- **Forward-in-time** 2D scheme derived from 1D PPM operators
- Advective-form inner operators \((f, g)\) eliminate leading-order deformation error
 - Allows preservation of constant tracer field under nondivergent flow
- Ensures forward-in-time scheme is stable
- **Fully 2D**! Stability condition is \(\max(C_x, C_y) < 1\)
- Flux-form outer operators \(F, G\) ensure mass conservation
Lin and Rood (1996, MWR)
Flux-form advection scheme

\[q^{n+1} = \frac{1}{\pi^{n+1}} \left\{ \pi^n q^n + F \left[q^n + \frac{1}{2} g(q^n) \right] + G \left[q^n + \frac{1}{2} f(q^n) \right] \right\} \]

• PPM operators are upwind biased
 - More physical, but also more diffusive

• Monotonicity constraint to prevent extrema; also option for “linear” (unlimited) non-monotonic scheme. Tracer advection is always monotonic.

• Scheme maintains linear correlations between tracers when unlimited or when monotonicity constraint applied (not necessarily so for positivity)
1D Advection Test

Lin and Rood 1996, MWR
Development of the FV3 core

- **Lin and Rood (1997, QJ): FV solver**
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Lin and Rood (1997, QJ)

FV solver

- Solves adiabatic layer-averaged vector-invariant equations. δp is the layer mass.

- Everything (except the PGF) is a flux! So we use the Lin & Rood advection scheme for forward evaluation.

- PGF evaluated backward with updated pressure and height

Question: how is vertical transport incorporated?
Lin and Rood (1997, QJ)
FV solver

- D-grid, with C-grid winds for fluxes
 - C-grid winds advanced a half-timestep—like a simplified Riemann solver. Diffusion due to C-grid averaging is alleviated

- Two-grid discretization and time-centered fluxes avoid computational modes
 - Divergence is invisible to solver: divergence damping is an integral part of the solver
FV solver: Vorticity flux

- Nonlinear vorticity flux term in momentum equation, confounding linear analyses
- D-grid allows exact computation of absolute vorticity—no averaging!
- Vorticity uses same flux as δp: consistency improves geostrophic balance, and SW-PV advected as a scalar!
- **Many** flows are strongly vortical, not just large-scale…

Figure 10. Polar stereographic projections (from the sphere in the north pole) of the potential vorticity contours at DAY 24 in the ‘mesospheric vortexgenesis’ test case at three different resolutions.
FV solver:
Kinetic Energy Gradient

- Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if KE gradient not consistent with vorticity flux

- Solution: use C-grid fluxes again to advect wind components, yielding an upstream-biased kinetic energy

\[\kappa^* = \frac{1}{2} \left\{ \mathcal{X}(u^\theta, \Delta t; u^n) + \mathcal{Y}(v^\lambda, \Delta t; v^n) \right\} \]

- Consistent advection again!
Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme

• Lin and Rood (1997, QJ): FV solver

• **Lin (1997, QJ): FV Pressure Gradient Force**

• Lin (2004, MWR): Vertically-Lagrangian discretization

• Putman and Lin (2007, JCP): Cubed-sphere solver

• Lin (in prep): Nonhydrostatic dynamics

• Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Lin (1997, QJ)

Finite-Volume Pressure Gradient Force

- Computed from Newton’s second and third laws, and Green’s Theorem
- Errors lower, with much less noise, compared to a finite-difference pressure gradient evaluation
- Easily carries over to nonhydrostatic solver
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver

- Lin (1997, QJ): FV Pressure Gradient Force

- **Lin (2004, MWR): Vertically-Lagrangian discretization**

- Putman and Lin (2007, JCP): Cubed-sphere solver

- Lin (in prep): Nonhydrostatic dynamics

- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Vertically-Lagrangian Discretization

• Equations of motion are vertically integrated to yield a series of layers, which deform freely during the integration

• **Truly Lagrangian!** All flow follows the Lagrangian surfaces, including vertical motion. Vertical transport is *entirely* implicit, so…

 • **No** vertical Courant number restriction!! This is *critical* for high vertical resolution in the boundary layer

• To avoid layers from becoming infinitesimally thin, vertical remapping to “Eulerian” layers is periodically performed
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Putman and Lin (2007, JCP)
Cubed-sphere solver

- Gnomonic cubed-sphere grid: coordinates are great circles
- Widest cell only $\sqrt{2}$ wider than narrowest
 - More uniform than conformal, elliptic, or spring-dynamics cubed spheres
- Tradeoff: coordinate is non-orthogonal, and special handling needs to be done at the edges and corners.

![Diagram of wind staggerings and fluxes for a cell on a non-orthogonal grid. The angle is that between the covariant and contravariant components; in orthogonal coordinates $\alpha = \theta/2$.](image)
Non-orthogonal coordinate

- Gnomonic cubed-sphere is non-orthogonal

- Instead of using numerous metric terms, use covariant and contravariant winds
 - Solution winds are covariant, advection is by contravariant winds
 - KE is product of the two
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Nonhydrostatic FV³

- **Goal**: Maintain hydrostatic circulation, while accurately representing non-hydrostatic motions in the fully-compressible Euler equations

- Introduce new prognostic variables: w and δz (height thickness of a layer), from which density (and thereby nonhydrostatic pressure) is computed

- Traditional semi-implicit solver for handling fast acoustic waves

 - **True nonhydrostatic!** Explicit w into vertically-Lagrangian solver

- Vertical velocity w is the 3D cell-mean value. Vorticity is also a cell-mean value, so **helicity** can be computed without averaging!
Development of the FV3 core

- Lin and Rood (1997, QJ): FV solver
- Lin (1997, QJ): FV Pressure Gradient Force
- Putman and Lin (2007, JCP): Cubed-sphere solver
- Lin (in prep): Nonhydrostatic dynamics
- Harris and Lin (2013) and Harris, Lin, and Tu (2016): Grid refinement
Stretched grid
The simple, easy way to achieve grid refinement

• Smooth deformation! And requires no changes to the solver

• Smooth grid has no abrupt discontinuity, and greatly reduces need for scale-aware physics

• Capable of extreme refinement (80x!!) for easy storm-scale simulations on a full-size earth

Harris, Lin, and Tu, 2016
Two-way grid nesting

• **Simultaneous** coupled, consistent global and regional solution. No waiting for a regional prediction!

• Different grids permit different parameterizations; **doesn’t need a “compromise” or scale-aware physics** for high-resolution region

• Coarse grid can use a longer timestep: **more efficient** than stretching!

• **Very flexible!** Combine with stretching for very high levels of refinement

Harris and Lin, 2013, 2014
FV solver:
Time-stepping procedure

- Interpolate time t^n D-grid winds to C-grid
- Advance C-grid winds by one-half timestep to time $t^{n+1/2}$
- Use time-averaged air mass fluxes to update δp and θ_v to time t^{n+1}
- Compute vorticity flux and KE gradient to update D-grid winds to time t^{n+1}
- Use time t^{n+1} δp and θ_v to compute PGF to complete D-grid wind update
FV³ nonhydrostatic solver: Time-stepping procedure

- Interpolate time t^n D-grid winds to C-grid

- Advance C-grid winds by one-half timestep to time $t^{n+1/2}$

- Use time-averaged air mass fluxes to update δp and θ_v, \textbf{and to advect w and δz, to time t^{n+1}}

- Compute vorticity flux and KE gradient to update D-grid winds to time t^{n+1}

- \textbf{Solve nonhydrostatic terms for w and nonhydrostatic pressure perturbation using vertical semi-implicit solver}

- Use time $t^{n+1} \delta p$, δz, and θ_v to compute PGF to complete D-grid wind update
Mass conserving two-way nesting

- Usually quite complicated: requires flux BCs, conserving updates, and precisely-aligned grids

- Update only winds and temperature; not δp, δz, or tracer mass

 - Two-way nesting overspecifies solution anyway

- **Very simple**: works regardless of BC and grid alignment

 ★ δp is the vertical coordinate: need to remap the nested-grid data to the coarse-grid’s vertical coordinate

- Option: “renormalization-conserving” tracer update